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QUESTIONS OF SIMILARITY AND THE SCATTERING
OF WAVES IN VISCOPLASTIC MEDIA

G. M. Lyakhov and K. S, Sultanov UDC 624,131.43 +539.21.084

A study of plane waves in viscous media was made in [1~7], A solution of the problem of the propaga~
tion of a wave set up by unsteady-state shock loading in a viscoelastic medium was obtained using an elec~
. tronic computer in [6], and a solution in a viscoplastic medium in [1, 7]. In the latter case, different equa~
tions are introduced describing the behavior of the medium with loading and unloading, which leads to the
formation of residual deformations. On the basis of the solutions of [1, 7], a finite-difference representa-
tion was constructed for the equations of motion in Lagrange variables, and for the sequence of differential
equations determining the behavior of the medium. The method of "straight-through" calculation with
pseudoviscosity was used. The introduction of the pseudoviscosity brings about the replacement of the
shock fronts by regions of a continuous change in the parameters, which leads to additional difficulties in
determination of the laws governing the washing-out of a shock wave and the scattering of waves, Below,
the method of characteristic curves is used to obtain a solution to the problem of the propagation of a
plane wave, set up by an unsteady-state shock load in a linear viscoplastic medium, corresponding to the
model of [1]. It follows from the calculations that volumetric viscosity leads to scattering of the waves
and to nonebservance of the condition of similarity. An increase by an order of magnitude in duration of
a wave changes the rate of propagation of the maximum of the stresses, and the stresses themselves, by
only a few percent. The values of the deformation and the velocity of the particles vary to a greater de~
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gree than the stress. It has been shown that, in the medium, there generally arises a double-wave con-
figuration, In front, there moves a forerunner, with a shock wave at the front. In the vicinity of the initial
cross section, behind the shock wave there follows a decrease, and then a continuous rise in the stress to

a second maximum, followed by a decrease in the stress. At a sufficient distance behind the shock wave,
there is a continuous rise in the stress to a maximum, and then a decrease in it., At still greater distances,
the amplitude of the shock wave is practically equal to zero, and the stress rises and falls continuously.
The model of [1] is designed for a description of soils and rocks, as well as some other solid media.

1. Statement of Problem, Method of Solution

We use a model of a viscoplastic medium [1], in accordance with which, in a medium, there exist
dynamic 0=Epe, (with & — «) and static 0=Ege (with £ —0) diagrams of the compression. Unloading takes
place in accordance with different equations than loading, which leads to the formation of residual deforma-
tions and reflects the plastic properties of the medium.

The deformation of an element of the medium has the form
e=¢;-+8&q,

where &, is connected with the instantaneous (dynamic) compression of the material, and &, with the re-
packing of the grains, taking place in the course of a finite period of time, With a decrease in the load,
£, varies according to the law

g - Um=Ei2(81 — &m), €n=0n/Ep, Ep>Ep.

The deformation &, is assumed to be irreversible. Under these assumptions, the behavior of the medium
is determined by the following equations:

a) with shock loading,
8:81=U/ED; (1)

b) with a continuous rise in the stress,
e+pe=0/Ep+uo/Eg;
uw=E Es/(Ep — Egin; (2)
¢) with a decrease in the stress, but a rise in &,,
e+ pe=0/Ey+ 10 (E5 — E5' — Ex') + pon (E5' — E'); G
d) with a decrease in the stress and &,=const,
Eqe=0, “)

where Ep is the dynamic compression modulus; Eg is the static compression modulus; ER is the modulus
of the unloading; 1 is the coefficient of the viscosity; p is the parameter of the viscosity.

We use Lagrangian variables (h is the mass, t is the time). The load in the initial cross section h=0,
setting up a wave (the first boundary condition) is represented by the expressions

o=0n{l — #/0),0 << 0,0=0,1>9. )

We assume y=Ep/Eg, /3=ED/ ER; the acoustic (wave) resistance (impedance) of the medium A =VEpP)=
P, Where p, is the initial density of the medium; c, is the speed of the sound of the longitudinal wave.
We write the equation of the line of the front in the plane h, t:

h=At.

Then the second boundary condition (at the front of the wave, where viscous properties do not appear)
can be represented by the expression
o= — Au where h==4¢. (6)

We go over to the dimensionless variables

t=pl; z=uhid; 0°=0/0m u=Ulum &'=t/tm; Up=—0nd;
Emzo-mrlED-
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TABLE 1

NO', of ' 1 2 3 A 5 6
variant

Value of 50000 | 500 | 50 | 10 | 5 | 25
nd

The basic equations of motion in these variables have the form

oud , ac® . oub , 88%
T m=0 Ftag=0

and Eqs. (1)-@4) o'=g&% £0+e0=0? +40%
€0+ &% == B0 + 0% (v + B— 1) -+ Ohuax (1 — B); £ =p0",
where Uomax is the maximal dimensionless stress in a particle of the medium. Then the boundary condi~
tion (5) (x =0) is written as 0'=1~7/p6, 0=7 = ); 6’=0, 7= ud, and (6) x=7),
o%=ys.
The system of equations is hyperbolic. The characteristic relationships in the plane x, T have the

form

do® -+ du®=(e® — y6%dr with dz/dv=+ 1,

do® — deb=(e" — y0%)dr with dz/dv=0

in the region where o> 0, 52 > 0, which corresponds to the condition do/dr > 0, dd"/ar < de® /or;

do® + %:—;— [0 — (3 4+ p— 1) 00 — (1 — p) o] de
with dx/dr =£8~V?,

dc"——%ds":—é— [0 — (p +B—1)0® — (1 — B)o%] dr

with dx/dr =0 in the region where o <0, &, > 0, which corresponds to the condition do%dr << 0, do®dv << Bde’/dr;

V Bde® 4 du’=0with dz/dv=x 1/}'p;
Bdo® — de®=0 with dz/dv=0

in the region where < 0, 52=0, which corresponds to the condition do%dt << 0, do®/dv=[fde’dx.

2. Results of the Solution and Their Analysis

Six variaats were calculated in an Odra digital computer. In all cases it was assumed that y=2,
5=0.5. The values of u# are given in Table 1.

The results of a calculation of the parameters of a wave at fixed points of the medium for u8=5 are
given in Fig. 1 (a is the stress, b is the deformation, and ¢ is the velocity of the particles), The distances
considered are sufficiently far from the origin of coordinates. Curves 0~4 illustrate distances x from the
initial cross section equal to 0, 5, 10, 20, and 40, respectively. At all distances, a forerunner moves in
front, at whose front all the parameters vary discontinuously. The value of the discontinuity does not de-
pend on the value of p8. It falls rapidly with increasing distance. The small circles denote parameters
at the forerunner, attained by the discontinuity, With x=5, the value of the discontinuity is equal to 0,079,
and, with x=10, to only 0.0063. In a viscoelastic medium, where loading and unloading of the medium take
place in accordance with exactly the same equation, with y=2 and =1 the values of the discontinuity at
these same distances are equal, respectively, to 0.082 and 0.007 [6]. Behind the shock wave, there is a
continuous rise in the parameters up to a maximum, followed by a decrease, With increasing distance
from the initial cross section, the values of all the parameters decrease.

Calculations show that, with an increase in u8, the rate of damping of the wave decreases with in~
creasing distance, while the time required to attain a maximum rises, With p6 =50,000, the wave is close
to stationary; at the distances under consideration, the values of the parameters practically do not vary,
and the time required to attain a maximum is the greatest, With y0=0.5, the wave lags behind the shock
wave and there is no washing-out [6].
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In the initial cross section and near it, there is first attained a maximum of the stress, and then of
the deformation and the velocity of the particles. With increasing distance from the initial cross section,
the moments of the attainment of a maximum of all the parameters approach each other and, at a suffi-
ciently great distance, are practically identical. With the passage of time, the deformation tends toward
a constant (residual) value, which depends on the distance and the value of 6.

Figure 2 gives curves of the dependence of the maximal stress on the distance, with different values
of u6. Here and in what follows, the numbering of the curves corresponds to the number of the variants
given in Table 1, Curves 3* and 3** were plotted from the data of [7], obtained with u6=5, =0.5, and
v egual, respectively, to 4 and 1.1. With a rise in vy, there is an increase in the difference between the
diagrams of the dynamic and static compression. This leads to a rise in the losses of energy in the wave,
and to its more rapid damping with increasing distance. Curve 3**,therefore, lies above, and 3* below,
curve 3.

The calculations show that, with increasing distance, the rate of damping of the maximal value of
the deformation (ar(z)aax)’ like the stress, depends essentially on uf.

With 46=50,000, the maximal deformation is practically equal to the limiting value attained on the
diagram of the static compression, and the residual deformation corresponds to unloading, from the static
diagram of the compression: &}, ~1.99, el¢g ~1.50. With a decrease in p6, the maximal and residual de-
formations decrease., With ué =5, at a sufficiently great distance, they approximately are two orders of
magnitude less than with £0=50,000. '

Let us consider in more detail the change in the stress at fixed points of the medium near the initial
cross section. In the region between the front of the wave (the forerunner) and the initial cross section,
the solution is determined by continuously differentiable functions, With x=0, in some neighborhood of
the initial cross section, behind the shock wave do’/dr <0. Figure 3 shows values of a® (r) in the neighbor-
hood of the initial cross section with p#=50 (variant 3). Curves 0-4 correspond to distances x equal to
0, 0.007, 0.01, 0.015, and 0.02, respectively. It can be seen from the curves that, in the case of a wave,
set up by an unsteady-state shock loading, there are two maxima near the initial cross section. With prop-
agation of the wave, the first maximum is rapidly smoothed out, i.e., the region where do’%/dr <0 vanishes.

910



\5'.0

max

0,8

0,4

Fig. 4

But, even with x=0.18, behind the shock wave at the front of the forerunner there is a further continuous
rise in the stress, During this time, in the initial cross section the stress decreases only to 0.9997. The
curves of o'(r) (see Fig. la) relate to relatively great distances, where there is no longer a first maximum
for the wave.

It follows from the calculations that the rate of propagation of the maximum of the stress Dy, ina
certain section rises with an increase in the distance., Under these circumstances, it tends toward a limit,
depending on the value of uf. With small values of pf, the limiting velocity Dy, ~1, i.e., it corresponds to
the velocity of the forerunner, determined by the diagram of the dynamic compression., With an increase
in p6, the limiting value Dy, decreases., With u8=5, 50, 500, 50,000, Dy, is equal, respectively, to 0.9, 0.7,
0.6, 0.5.

The rate of propagation of the maximum of the stress with small values of x is greater than the ve~
locity of the maximum of the deformation and the maximum of the velocity of the particles. With a rise
in p0, the values of these velocities approach each other. With =50 and x> 10, the velocities practically
coincide.

3. Scattering of Waves in Viscous Media and Deviation

of the Parameters from the Similarity Condition

The calculated results given above show that viscous properties lead to scattering: with an increase
in the duration of the wave, the rate of propagation of the maximum of the perturbation declines. With u =
1000 sec™!, this corresponds to soils of average density; with a rise in the duration of the loading 0, setting
up the wave, from 0.005 to 0.05 sec, the velocity of the maximum decreases by approximately 1,3 times,
and, with a change in 6 from 0.05 to 0.5 sec, by 1.1 times.

The natural scatter in the properties of exactly the same soil leads, as experiments show [1], to a
change in the velocity Dy, by 1.3-1.5 times. Therefore, to observe scatter, the time of action of the wave
must be varied by one and one-half to two orders of magnitude. With smaller intervals of the values of
it is practically impossible to disclose the scatter, as is shown by the results of experiments. Let us com~
pare the parameters of the waves in linear plastic and viscoplastic media, We use a model of a plastic
medium in which the loading is linear ¢=Epe and unloading takes place along the straight lines 0= 0y =
ER(e —&m)(0y, is the maximal stress; €y, is the maximal deformation in a particle). This model is a limit-
ing case of the model used for a viscoplastic medium with Eg —~Ep or u—0. For such a medium, an ana-
lytical solution has been obtained [1] to the problem of the propagation of a wave set up by shock loading,
varying in the initial cross section according to Fgs. (5). The maximal dimensionless values of the stress,
the deformation, and the velocity of the particles in the variables h, t are defined by the expressions

0 0 6 { Adp—An n
Omax = Emax = Umax = 1 — A5
245 D
0 _ %max, ¢ _ Emax, _o “max |
Omax = ~=——; Emax = 7 Ymax = f
Um ‘m Y
o h AR
Az =V Erpsi 75 i Ap=VEpp,

The maximal values of all three quantities coincide and vary in accordance with a linear law with
the dimensionless distance h/Ap)6.

Figure 4 gives curves of the dependence of the maximal stress in a wave on the dimensionless dis~
tance h/AD0=x/u9 with different values of u8 in a viscoplastic (curves 2-6 correspond to variants 2-6 of
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Table 1) and in a plastic medium (curve 0). The stress in a viscous medium varies in accordance with a
nonlinear law; at all distances it is less than in a plastic medium. With different values of the parameter
10, the maximal values of the stress are close.

The calculations show that the maximal values of the deformation and the velocity of the particles in
a viscous medium, with increasing distance from the initial cross section, vary according to a nonlinear
law and, at close distances, exceed the values of these quantities in a plastic medium, With an increase
in the distance, agnax and ugna_x in a viscous medium decrease more rapidly and, at a sufficiently great
distance, become smaller than in a plastic medium. In distinction from the stress, they vary appreciably
with a change in p6. An increase in 19 by one or two orders of magnitude, at corresponding distances,

leads to a change in Sgnax and ugnax by tenths of a precent, and to small changes in Ugnax

The deformation of a medium with the passage of a wave takes place with a variable deformation rate
€", The distances where there are no shock waves, €0 at first rises, attains a maximum, and then declines.
Therefore, the sections of the diagram of 0(€) corresponding to a rise in the stress are found to be concave
toward the axis of the deformations, even when the diagrams o=f(g), corresponding to £ —oand £ —0, are
linear or convex toward the axis of the deformations. After the load has been removed, residual deforma-
tions remain in the medium, whose value depends on the magnitude and the duration of the load setting up
the wave.

4, Overall Character of Waves in Viscoplastic

and Elastoplastic Media

In viscoplastic media, where the diagrams of the dynamic (é—>°°) and static (€ —0) compression are
linear or convex with respect to the axis of the deformations, the character (profile) of the wave depends
essentially on the distance from the initial cross section and on the value of the parameter uf. Under the
action of unsteady-state shock loading, in the general case shock fronts exist only in the neighborhood of
the initial cross section. Under these circumstances, there arises a double-wave configuration, A fore-
runner moves ahead, with a shock wave at the front, i.e., the first maximum. Behind the shock wave there
is first a drop, and then a continuous rise in the stress up to a second maximum. After this, with increas-
ing distance, there is a further gradual decrease in the magnitude of the shock wave at the forerunner down
to zero. Under these circumstances, the maximal stress in the wave decreases, but still remains large.
The time required for the stress to rise to a maximum increases. There arises a continuous compression
wave which exhausts itself gradually with propagation.

In elastoplastic media, where the diagram of the compression with small stresses is assumed to be
concave, and with large stresses, convex, with respect to the axis of the deformations, with the action of
unsteady-state shock loading, there also arises a double~wave configuration [1, 8]. A forerunner moves
ahead (an elastic wave), with a shock wave at the front, After this, there follows a region of constant flow
(a plateau), along which the second shock wave, called a plastic wave, is propagated. The amplitude of the
plastic wave decreases with increasing distance; under these circumstances, the duration of the region of
constant flow rises. The amplitude of the forerunner remains unchanged up to the exhaustion of the plastic
wave. ’

The experiments show that the picture of the propagation of waves in soils and rocks and in some
other dense media is described most exactly by a model of a viscoplastic, and not an elastoplastic, medium.
In actuality, the shock wave at the front of the forerunner falls rapidly to zero, where the maximal stress
in the wave is still great, There is no plateau behind the front of the forerunner. The second maximum is
washed out. The damping of waves in a viscous medium takes place more rapidly than in a plastic medium,
which is closer to the experimental values,

The diagrams of compression with a variable sign of the curvature, taken as a basis in the model of
an elastoplastic medium, as is shown by an analysis of experiments on the dynamic compression of sam-
ples were obtained with a large, but finite, deformation rate, i.e., they do not relate to the limiting case
€ —, In addition, during the process of compression, the deformatton rate £ was obviously not always
held constant. If, with compression, in some interval of time ¢ decreases, the resulting curve of o(€) is
found to be concave, and, with a rise in é, convex toward the axis of the deformations, even if the dynamic
diagram of the compression with €~ ig linear.

Thus, the washing out of the waves with increasing distance [1, 6, 7] is connected with the viscous
properties of the solid media, and not with a different sign of the curvature of the diagram of the dynamic
compression with different values of the stress,
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It is noted in [9] that the diagrams of the dynamic compression of soils and rocks are convex with
respect to the axis of the deformations, and that shock waves exist only in the region of high stresses,
Such a character of the change in the waves with increasing distance is explained by the dilatant properties
of soils and rocks in a pulverized state (dilatance is the change in the volume of a granulated medium with
shear).

Conditions of similarity with the propagation of waves are observed in a model of an elastoplastic
medium and are not observed in a model of a viscoplastic medium. A large number of experiments show
that the condition of similarity is satisfied in a first approximation in soils and rocks. The conclusions
with respect to the satisfaction of the condition of similarity are based on a comparison of the values of
the maximal stress in the wave with different values of its duration at identical dimensionless distances.
The calculations carried out above show that in exactly the same viscous medium with different values of
the duration of the loading, setting up the wave, at identical dimensionless distances h/ADH, the maximal
stresses differ only slightly, Therefore, observance of the condition of similarity with respect to the stress
is not a very weighty argument in support of the use of a model of an elastoplastic medium. But the solu~
tion of wave problems taking account of viscous and plastic properties is complicated, Therefore, it is
advisable, as before, to use the simpler model of an elastoplastic medium, which permits obtaining an
approximate picture of the damping of the waves.
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